How much is "enough"? – strategies to monitor plasma-bio interactions for plasma endpoint detection

K. Stapelmann¹, J. E. Thomas¹, G. Karkada², J. Sutter², F. C. Krebs², S. Kumar³, F. Berthiaume³, V. Miller²,

¹Department of Nuclear Engineering, North Carolina State University, Raleigh, NC, USA

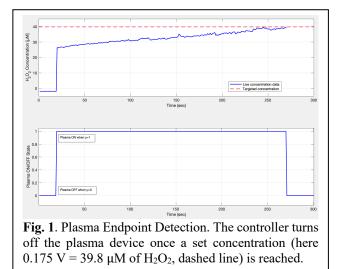
²Department of Microbiology and Immunology, Drexel University College of Medicine,

Philadelphia, PA, USA

³Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA

Abstract: We investigated strategies to monitor plasma-bio interactions in real-time and *in situ* to provide input data for plasma endpoint detection. Different bio-electrochemical sensors were tested for feasibility in de-ionized water, buffer solutions, cell culture medium with and without cells, and finally in a murine wound model *in vivo*. The results indicate that bio-electrochemical sensors are a suitable strategy for plasma endpoint detection.

1. Introduction


Plasma medicine offers treatment alternatives for diseases from wound healing [1] to cancer treatment [2] and viral infections [3]. There has been no consensus reached for a definition of a "plasma dose" and current treatments rely on empirical observations. Furthermore, the extent of clinical efficacy cannot be evaluated until several days after treatment. Only a few methods have been successfully used for real-time plasma control (e.g., temperature measurements, deposited power, and optical emission spectroscopy) [4,5]. Here, we report a proof-of-concept for plasma endpoint detection based on *in situ* real-time measurements *in vitro* and *in vivo*. We established real-time detection methods enabling safe and effective treatment regimens useful for medical cold atmospheric plasma (CAP) applications.

2. Methods

A microsecond pulsed volume dielectric barrier discharge (DBD) is used [6]. A copper electrode is covered with a 2 mm thick Al₂O₃ layer serving as dielectric. The DBD is powered by a self-built power supply controlled by a microcontroller. The power supply can be operated up to 25 kV_{pp} with pulse frequencies up to 1 kHz. The studies presented here were performed at 300 Hz. A variety of bioelectrochemical sensors (ZPS WIR-000-00163, Zimmer & Peacock, Norway) were tested for feasibility to perform real-time measurements *in situ*. The bio-electrochemical sensors were attached to the microcontroller which was used to either perform open-circuit potentiometry or cyclic voltammetry, depending on the analyte to be detected. In conjunction with low-pass filters, real-time measurements of the small current and voltages were enabled.

3. Results and Discussion

Figure 1 shows an example of the plasma endpoint detection when using H_2O_2 as analyte of choice. The controller turns off the plasma device once a set target concentration is reached. The results depicted are a proof-of-concept in phosphate-buffered saline (PBS) with an arbitrarily chosen endpoint of 0.175 V, corresponding to 39.8 μ M. *In vitro* tests with a scratch assay in keratinocytes have shown a dose-dependent increase in H_2O_2 as well as

oxidation-reduction potential (ORP), correlating with an increase in mitochondrial superoxide production. In a murine wound model, similar trends in real-time and *in situ* H_2O_2 and ORP measurements were observed. The *in vitro* and *in vivo* results demonstrate the feasibility of the real-time measurements to monitor plasma-bio interactions.

4. Conclusion

Bio-electrochemical sensors to measure H_2O_2 and ORP can be a strategy to monitor plasma-bio interactions for plasma endpoint detection. The sensors can be used *in situ* and for real-time measurements, allowing to control CAP delivery for medical applications such as wound healing.

Acknowledgement

Research was supported by the National Institute of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R01EB029705.

References

- [1] B. Stratmann et al., JAMA **3** e2010411 (2020).
- [2] H.-R. Metelmann et al., Clin. Plasma Med., 9 (2018).
- [3] H. Mohamed et al., PLoS One 16 e0247125 (2021).
- [4] D. Gidon et al., PSST, 28, 085001 (2019).
- [5] D. Gidon et al., PSST, 26, 085005 (2017).
- [6] D. Roberts et al., J. Med. Microbiol. 73 (2024).